“Baby it’s Cold out there!”
Concepts Of Thermoregulation: Myths and Truths about Thermoregulation

Liz Drake MN, CNNP, CNS

Studies have shown that hypothermia is an independent risk factor for neonatal mortality and morbidity.
No other factor is as important in newborn survival as its temperature control.
A thorough understanding of thermoregulation is necessary to provide an optimal environment for the neonate to thrive.

Objectives
- Describe the primary physiological differences between temperature regulation in the premature and the full term infant
- List the 4 methods of heat transfer
- Explain the importance of measuring both axillary and skin temperatures when assessing cold stress
- Identify at least two signs/symptoms of hypo- and/or hyperthermia
- List two practice, equipment, or environmental modifications to consider when utilizing developmental support devices in the NICU

Definition of Terms
- **Neutral Thermal Environment (NTE)**—narrow range of environmental temperature without Δ or Υ heat production above resting levels minimal oxygen consumption (in-utero temp 37.9(100.2))
- **Thermo-neutrality**
 - state of normal body temperature/oxygen consumption with minimal heat production
 - optimal thermal condition supporting internal functions
- **Thermal Balance**—rate of heat generation/heat dissipation
- **Critical Temperature**—O2 consumption increases in an attempt to maintain body temperature
Risk Factors Contributing to Vulnerability to Thermal Stress

- Limited stores of metabolic substrates
- Heat production is by non-shivering thermogenesis
 - Burning of brown fat
- Greater surface to weight ratio
- High evaporative loss due to immature skin integrity
- Immature CNS delays response to cold stress
- Heat production obligates oxygen consumption

Factors Placing Infants at Risk for Cold Stress

- SGA
- Neurologic (HIE)
- Endocrine
- CV
- RDS
- Neural Tube & Abdominal wall defects
- Maternal analgesia/sedated infants
- Infection
- Hypoglycemia

3 Methods to Heat Production

Motor, Tone & Activity

- Motor tone and activity lead to heat production
- Low tone leads to inability to use flexion to reduce surface area
- Voluntary muscle activity
 - Flexion
 - Extension
Shivering

The Central Nervous System

- Hypothalamus - control center for temperature regulation
- Located at base of brain forming floor and lateral wall of 3rd ventricle
- Links nervous system to endocrine system via pituitary
- Part of the limbic system
- Responsible for metabolic processes
- Controls body temperature, hunger, fatigue, sleep and circadian rhythms

- 32 weeks
- 26 weeks
- Term

White Fat
- Serves as insulation
- Fetus makes white fat during development for energy source

Brown Fat
- Burning produces heat
- Mitochondria metabolizes fat to produce heat
- Present at 26-28 wks. - 3-5 weeks post-natally.
Non-Shivering (chemical) Thermogenesis

- Heat produced by metabolism of brown fat
- Thermal receptors transmit impulses to hypothalamus stimulating norepinephrine release in brown fat
- Nor-epi activates lipase, resulting in glycolysis and fatty acid oxidation
- Glycolysis increases metabolic rate increasing heat production
- Nor-epi released @ BF site as a result of cold stress
- Release of FFA undergoes combustion in mitochondria of brown fat cells releasing heat

Consequences of Cold Stress

- Infant responds to chilling by increasing metabolic rate
- Pulmonary vasoconstriction & decreased production of surfactant
 - Diminished effective ventilation or increased hypoxia
 - Atelectasis of alveoli
 - Increased cardiac shunting

Mechanisms of Heat Transfer

- Conduction: heat loss to the media can be caused by any one, or a combination, of the following factors: (A) Conduction: heat loss due to direct contact with a colder surface. (B) Convection: heat loss due to air movement. (C) Convection: heat loss due to the cooling effect of water loss on the skin. (D) Radiation: heat loss via infrared heat rays due to body metabolism.
Mechanisms of Heat Transfer

“Evaporative”

- Evaporative - transfer of body heat through conversion of liquid to vapor
 - >25% body water/skin permeability/surface area
 - 25% @ delivery
 - Respirations
 - Increases depending on air speed and activity
 - Increased with low humidity

Interventions
- Dry infant after birth/bath
- Pre-warm
 - blankets/hats, solutions, O2

“Convective”

- Convective - the transfer of heat to the air moving across/around the body
 - Dependent on speed of air movement
 - Dependent on amount of body surface exposed
 - Dependent on temp gradient between infant/air/liquid
 - Larger the gradient…the greater the heat loss

Interventions
- Warm oxygen
- Avoid vents/drafts
- Swaddle/utilize clothing/products

“Conductive”

- Conductive - transfer of heat between 2 solid objects in contact with each other
 - Heat transferred proportional to size of temp gradient
 - Larger surface area in contact the > heat or cold transferred
 - Heat loss > on highly conductive surfaces such as metal
 - Heat gain from object warmer than body

Interventions
- Pre-warm: surfaces, scales, x-ray plates, circ. boards, incubator, warmer, clothing, stethoscope, blankets

“Radiation”

- Radiation - transfer of heat between 2 solid objects not in direct contact with each other
 - Highly undetected
 - Based on temp gradient of objects/surface facing object
 - Independent of ambient temp

Interventions
- Swaddle infant
- Pre-warm incubator/cover incubator
- Keep bed away from window or direct sunlight, keep blinds/drapes closed
Symptoms of Cold Stress

Hypothermia – Rectal/Axillary < 36.5

- Core temperature below range of (36.5 to 37.5 °C, (skin temp 0.5 to 1.0 °C lower).
- Cyanosis/Acrocyanosis/Mottling/Poor Perfusion
- Poor feeding/^ residuals
- Apnea/Bradycardia/^ O2 needs
- Decreased activity/Lethargy/Hypotonia
- Irritability/Weak Cry/CNS depression
- Seizures
- Hypoglycemia
- Acidosis

Hypothermia Studies

- Laptook 2003
 - 5,277 infants - 401-1499g.
 - 14.3% had admission temperatures < 35, 32.6% 35-35.9
 - Admission temperatures inversely related to mortality with 28% increase in death for every 1 °C decrease in temperature

- Miller (CPQCC) 2006
 - 8,782 vlbw infants
 - Mean admission temperature 36.3 (+) 0.8)
 - 30.5% had mild hypothermia on admission
 - 25.6% moderately hypothermic associated with risk of IVH/death

Treatment of Hypothermia

- Re-warm slowly – rapid causes heat induced apnea, hypotension & shock
- Place in NTE
- Asses ventilator temperature
- Monitor axillary and skin temperature
- Utilize other heat sources minimizing changing incubator temp
- Reduce heat loss mechanism

Hyperthermia - Temperature > 37.5

- Can be iatrogenic or symptomatic of a disease process
- Increased axillary temperature can also be symptom of cold stress
- Usually occurs by means of an external source
Causes of Hyperthermia

- Maternal Fever
- Radiant warmer/incubator/environment temperature
- Swaddling
- Infection
- CNS disorder
- Misuse of equipment
- Neonatal Abstinence Syndrome
- Use of Prostaglandin therapy

Effects of Hyperthermia

- Tachycardia
- Tachypnea in attempt to release excess heat
- Hypotension & dehydration from vasodilation and IWL
- Seizure activity
- Apnea
- Poor feeding
- Poor weight gain
- Oxygen requirements/apnea

Treatment of Hyperthermia

- Treat cause
- Remove heat source
- Remove barrier to heat loss
- Assess equipment function
- Cool slowly every 30-60 minutes
- Maintain in extended positions

Managing the Physical Environment

- No single environment is appropriate for all infants
- The medical condition other situations may require compromise of methods
Radiant Warmer

- **Advantages**
 - Infants who need observation
 - Easily accessible

- **Disadvantages**
 - Increase convective heat loss
 - Increased evaporative and insensible water loss
 - Decreases neuroprotective environment

Incubator

- **Advantages**
 - Infants requiring a controlled thermal environment
 - Minimizes evaporative and convective heat loss
 - Available in both ambient and servo mode

- **Disadvantages**
 - Radiant heat transfer to walls can occur

Warmer Management

- **Maintain in Servo/Skin mode**
- **Probe attached to skin surface with reflective device and exposed to heat source**
- **Set temperature to your desired skin temp**
- **Avoid use of thermal blankets**
- **Weaning**

Servo/Skin mode

- **Radiant Warmer and incubator**
- **Regulates ambient temperature to preset skin temp**
- **As infants temperature fluctuates above or below set temperature servo control changes**
- **Evaluate ambient temperature regularly**
- **Infants inability to maintain temperature in consistent environment can be an early sign of sepsis, ICH, NEC**
Monitoring Body Temperature

- Rectal temperature closely approximates core temperature
 - Measure is invasive and difficult to maintain
 - Possible risk of perforation
- Axillary and abdominal skin temperature most used
 - Accessible, convenient, and safe
 - Not an ideal estimate of core temperature
- Axillary and abdominal temperatures are highly dependent on skin temperature and influenced by environment

Skin Temperature

- Warmer
 - Reflective shield in alignment with heat source
 - Probe cover should not be covered by any other equipment or blanket

Monitoring Body Temperature

- Rectal Temperature: Core Temperature, Late indicator
 - Normal Range 36.5-37.5 (AAP, WHO, IICOR)
- Axillary Temperature
 - Normal range: 36.4-37.4 (AAP)
- Skin Temperature – early indicator
 - Normal Range: 36.2-37.2 (avg 36.8-36.9) for preterm
 - 36.0 - 36.5 in term infant

Skin Temperature

- Incubator
 - Probe can be covered
 - Avoid insulation
 - Probe cover
 - Tape
 - Reflective/hydrogel
Delivery Room Practices

- Room Temperature – WHO, llcor 2010, > 25° -26° C
 - Admission temp increased by 0.5 and decreased hypothermia 66.8% to 34.9%
 - DR/s need individual adjustable thermostats and humidity controls

- Study: Polyethylene cap RCT:
 1) polyethylene cap with only body dried
 2) polyethylene bag with body wet up to neck and head dried uncovered
 3) control group with infant dried, placed in pre-warmed towels with head left uncovered

Warming mattresses

- Studies
 - Infants < 28 weeks in polyethylene bags had mean rectal of 36.5
 - 44% of < 29 weeks in polyethylene bags had mean temp < 36.4
 - Mortality fell from 252/1000 in control to 229/1000 in the bag and to 175/1000 in the bag and mattress group.

Combining Interventions

- Delayed Cord Clamping

Modes of Temperature Control

"Both effective.....skin needs more attention"

<table>
<thead>
<tr>
<th>Air</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early temperature changes noted</td>
<td>Automatically regulates air temperature to preset skin temperature</td>
</tr>
<tr>
<td>Infant’s temperature could fluctuate if in and out of incubator</td>
<td>Ambient temperature changes creating fluctuations (NTE?)</td>
</tr>
<tr>
<td>Simple to use</td>
<td>Can miss early signs of sepsis, NEC or changes</td>
</tr>
</tbody>
</table>
Humidity

- First mentioned in 1933
- Decreases IWL, fluid intake, UO, less weight loss and decrease hypernatremia during 1st week of life
- No standards for how much and how long
- General Practices
 - Range of 45-100% RH – avg. 60-80 in ELBW
 - 1st 10 days of life to 32 weeks
- Goal – create a unit standard to practice

Warming Practices

- Warm formulas
- Humidify air and oxygen
- Cohort study: humidified gas supporting infants < 32 wks
 - reduction in postnatal fall in temperature in cohort with control admission temperature 35.9 °C versus heated: 36.4 °C
- Clothing, developmental supports, incubator covers
- Kangaroo Care: skin to skin contact

Temperature regulation in Developmental Supports

Things to consider

- How do we approach cares?
- Minimal entry
- Incubator - Use of heat shield
 - Pull off blanket – radiation heat loss
 - Open port-hole doors/Popping top - loss of humidity
- Infant
 - Unwrapping infant - convective/evaporative heat loss
 - Suctioning and disconnect humidified heat source
Weaning from incubator

- Things to consider:
 - Infant > 1500 grams, gaining weight, other milestones
 - Infant can tolerate incubator temperature of 25-26
 - 25°C = 77°F, 26°C = 78.8°F
 - Consistent weight gain
 - Time out of incubator
 - Parent Education
 - How are adults dressed?
 - Maintain skin temp monitoring in crib for 24 hours

Scenario

- 30 week infant in incubator in air mode
 - No skin temp probe on
 - Axillary temp - 99°F
 - What would you do?

- 28 week infant in incubator in servo mode
 - Skin temp is reading 36.2
 - Axillary temp 99.8
 - What would you do?

Where do we go from here?

- Develop interdisciplinary thermoregulation guidelines
 - Charts are dated
 - Nursing practice and nursing driven
- Modifications for developmental products, KC, etc.
- Avoid using absolutes
 - When 28 weeks
 - When 1500 grams
 - Only skin mode/or air mode

Questions

- References available via email @ lizdcnnp@aol.com